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Classical Statistical Learning Theory

Work Covered

This work covers [BLLT20]. Essentially, this paper gives a tight bound for
the excess risk of a linear predictor in the overparametrized regime.

They identify nearly exactly a subregime called the “benign overfitting”
subregime, where overfitting occurs; yet the excess risk does not suffer too
much. We will first describe the motivation, then a setup, and then a
description of the regime and how it arises.
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Classical Statistical Learning Theory

Classical Statistical Learning Theory

Many of the models we have seen in class have very few parameters
in them.

However, most deep models have a much larger number of
parameters, frequently far more than the number of data points.

In statistical learning theory, we are taught that models which fit
every data point exactly cannot possibly generalize.
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Classical Statistical Learning Theory

Classical Statistical Learning Theory

Somehow models in the real world both interpolate and have low test
loss.

How is this possible?

Informally, all the memorization has to go into dimensions that are
somewhat inessential for the prediction.
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Benign Overfitting: Practice

Benign Overfitting: Practice

Many times when we use deep neural networks, we can add lots of
noise to the training set, and the models (which are trained using
standard cross-entropy losses) will continue to perform well. See, for
example, [CWK20, HZZ20].

This is quite strange – it seems that the overfitting doesn’t actually
hurt the network. This begs the question: maybe the overfitting
doesn’t matter?

To make the problem more tractable, we look at the linear regression
case.
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Benign Overfitting: Practice

Definitions

Because we consider regimes where n < p, it is often the case that
several estimators will achieve minimum least squared loss. Thus, we
define the min-norm estimator.

Definition (Min-Norm Estimator)

Define θ̂ to be min-norm estimator if and only if it solves the following
optimization problem:

min
θ∈H
‖θ‖2

such that ‖Xθ − y‖2 = min
β
‖Xβ − y‖2
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Some prior work

Generally speaking, most generalization bounds show that θ̂ ≈ θ∗.

However, the notion of approximation is crucial – we often don’t have∥∥∥θ̂ − θ∗∥∥∥
2
→ 0!

Instead, we look at the excess risk

Ex ,y [(y − x>θ̂)2︸ ︷︷ ︸
model risk

− (y − x>θ∗)2︸ ︷︷ ︸
optimal risk

] = (θ̂ − θ∗)>Σ(θ̂ − θ∗) =
∥∥∥θ̂ − θ∗∥∥∥2

Σ
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Thinking about the problem

One way to think about the problem is that in a linear regression
problem, Σ is basically enough to fully specify a data generating
process.

Thus, any insight we can obtain as to why overfitting happens can
only come from thinking about the spectrum of Σ, λ1 ≥ λ2, . . . ≥ λd .
These d numbers uniquely determine the risk of the algorithm!
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A teaser

Theorem ([BLLT20], Theorem 6)

If µk(Σ) = k−α ln−β(k + 1), then Σ is benign iff α = 1 and β > 1.
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Our Implementation

We implemented the algorithm described Google’s JAX library, which is an
extension to the NumPy library. Our code can be found at this GitHub
repository.
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Benign Overfitting: Theory

Benign Overfitting: Theory

How can we decide whether overfitting is a concern in a regression
problem?

Intuitively, there are two constraints to the complexity of the problem
we must consider:

The scale of the problem should be small compared to the sample size
- the eigenvalues must decay relatively quickly

The problem must not be dominated by its largest eigenvalues.
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Benign Overfitting: Theory

Further Definitions

Let µk(Σ) denote the k-th largest eigenvalue of Σ.

To constrain the complexity of the regression problem, we construct
the notions of effective ranks.

Definition (Effective Ranks)

If Σ is a covariance matrix, and λi = µi (Σ) for i = 1, 2, . . . , then define:

rk(Σ) =

∑
i>k λi

λk+1
Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

By bounding the excess risk using effective ranks, we will be able to
classify Σ as benign based on its eigenvalues.
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Benign Overfitting: Theory

Main Result

Theorem (Theorem 4)

Let k∗ = min{k ≥ 0 : rk(Σ) ≥ bn}. Let δ < 1 such that log(1/δ) < n/c .
Then, there exist constants b, c , c1 > 1 such that the following holds.
If k∗ ≥ n/c1, then ER(θ̂) ≥ σ2/c
Otherwise,

R(θ̂) ≤ c

(
‖θ∗‖2 ‖Σ‖max

{√
r0(Σ)

n
,
r0(Σ)

n
,

√
log(1/δ)

n

})

+ c log(1/δ)σ2
y

(
k∗

n
+

n

Rk∗(Σ)

)
with probability at least 1− δ. Additionally, ER(θ̂) ≥ σ2

c

(
k∗

n + n
Rk∗ (Σ)

)
.
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Benign Overfitting: Theory

Examples of Benign Problems

Definition (Corollary to Theorem 4)

A covariance operator Σ is benign if

lim
n→∞

r0 (Σn)

n
= lim

n→∞

k∗n
n

= lim
n→∞

n

Rk∗
n

(Σn)
= 0

Theorem (Theorem 6)

1 If µk(Σ) = k−α ln−β(k + 1), then Σ is benign iff α = 1 and β > 1.

2 If

µk (Σn) =

{
γk + εn if k ≤ pn
0 otherwise

and γk = Θ(exp(−k/τ)), then Σn is benign iff pn = ω(n) and
ne−o(n) = εnpn = o(n).
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Excess Risk Bound in terms of the Trace

Theorem (Lemma 7)

R(θ̂) ≤ 2θ∗>Bθ∗ + cσ2 log
1

δ
tr(C )

with probability at least 1− δ. Additionally,

EεR(θ̂) ≥ θ∗>Bθ∗ + σ2 tr(C )

where

B =

(
I − X>

(
XX>

)−1
X

)
Σ

(
I − X>

(
XX>

)−1
X

)
C =

(
XX>

)−1
XΣX>

(
XX>

)−1

We can come up with bounds on θ∗>Bθ∗ based on [KL17]

Thus, the core of this proof is to bound tr(C ).
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Proof of Lemma 7

Using the fact that y − x>θ∗ has zero mean:

R(θ̂) = Ex ,y

(
y − x>θ̂

)2
− E

(
y − x>θ∗

)2

= Ex ,y

(
y − x>θ∗ + x>

(
θ∗ − θ̂

))2
− E

(
y − x>θ∗

)2

= Ex

(
x>
(
θ∗ − θ̂

))2
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Proof of Lemma 7 (cont.)

R(θ̂) = Ex

(
x>
(
I − X>

(
XX>

)−1
X

)
θ∗ − x>X>

(
XX>

)−1
ε

)2

≤ 2Ex

(
x>
(
I − X>

(
XX>

)−1
X

)
θ∗
)2

+ 2Ex

(
x>X>

(
XX>

)−1
ε

)2

= 2θ∗Bθ∗ + 2ε>Cε

Lemma 36 from [PG19] finishes the proof by showing

ε>Cε ≤ σ2 tr(C )(2t + 1) + 2σ2
√

tr(C )2 (t2 + t) ≤ (4t + 2)σ2 tr(C )
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Trace Decomposition

Theorem (Lemma 8)

Consider a covariance operator Σ and λn > 0. Write its spectral
decomposition Σ =

∑
j λjvjv

>
j , where the orthonormal vj ∈ H are the

eigenvectors corresponding to the λj . For i with λi > 0, define
zi = Xvi/

√
λi . Then,

tr(C ) =
∑
i

λ2
i z
>
i

∑
j

λjzjz
>
j

−2

zi


Furthermore, if λi > 0, letting A−i =

∑
j 6=i λjzjz

>
j , we have

λ2
i z
>
i

∑
j

λjzjz
>
j

−2

zi =
λ2
i z
>
i A−2
−i zi

(1 + λiz>i A−1
−i zi )

2
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Key Step

One of the most important steps is an understanding of the eigenvalues of
A−i .

Lemma

There is a constant c such that for any k ≥ 0 with probability at least
1− 2e−n/c ,

1

c

∑
j>k

λj − cλk+1n ≤ µk+1(A−i ) ≤ c

∑
j>k

λj + λk+1n


and if rk(Σ) ≥ bn,

1

c
λk+1rk(Σ) ≤ µn(A−i ) ≤ µk+1(A−i ) ≤ cλk+1rk(Σ).
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Upper Bound on the Trace

Lemma

There are constants b, c ≥ 1 such that if 0 ≤ k ≤ n/c , rk(Σ) ≥ bn, and
l ≤ k then with probability at least 1− 7e−n/c ,

tr(C ) ≤ c

(
l

n
+ n

∑
i>l λ

2
i

(
∑

i>k λi )
2

)
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Sketch of Upper Bound on Trace

The idea is to write

tr(C ) =
l∑

i=1

λ2
i z
>
i A−2
−i zi

(1 + λiz>i A−1
−i zi )

2
+
∑
i>l

λ2
i z
>
i A−2zi

so it suffices to bound each set of terms independently.
For the first set of terms, we can obtain that

z>i A−2
−i zi ≤ µn(A−i )

−2 ‖zi‖2 ≤ c2
1 ‖z‖

2

(λk+1rk(Σ))2

and (where ΠLi is a projection onto the lowest n − k eigenvectors of A−i ).

z>i A−1
−i z ≥ (ΠLi z)>A−1

−i (ΠLi z) ≥ µk+1(A−i )
−1 ‖(ΠLi z)‖2 ≥ ‖ΠLi z‖

2

c1λk+1rk(Σ)
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Upper Bound on the Trace, contd.

For the second sum we get

∑
i>l

λ2
i z
>
i A−2zi ≤

∑
i>l

µn(A−i )
−2λ2

i ‖zi‖
2 ≤

c2
1

∑
i>l λ

2
i ‖zi‖

2

(λk+1rk(Σ))2

This can be bounded with standard concentration inequalities.

Lemma

Suppose {λi}∞i=1 is a non-increasing sequence of non-negative numbers
such that

∑∞
i=1 λi <∞, and {ξi}∞i=1 are independent centered

σ-subexponential random variables. Then for some universal constant a
for any t > 0 with probability at least 1− 2e−t ,∣∣∣∣∣∑

i

λiξi

∣∣∣∣∣ ≤ aσmax

tλ1,

√
t
∑
i

λ2
i
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Lower Bound on the Trace

Lemma

There is a constant c such that for any i ≥ 1 with λi > 0, and any
0 ≤ k ≤ n/c , with probability at least 1− 5e−n/c ,

λ2
i z
>
i A−2
−i zi

(1 + λiz>i A−1
−i zi )

2
≥ 1

cn

(
1 +

∑
j>k λj + nλk+1

nλi

)−2
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Proof Sketch of Lower Bound on the Trace

The proof relies on several previous results [Lemma 10, Corollary 13]
but we demonstrate the style of proofs used in this paper to establish
the main result, as well as the other lemmas presented.

Lemma 10 establishes that with probability 1− 2e−n/c1

z>i A−1
−i zi ≥

‖ΠLi zi‖
2

c1

(∑
j>k λj + λk+1n

)
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Proof Sketch of Lower Bound on the Trace (cont.)

Corollary 13 establishes that with probability at least 1− 3e−n/c1

‖ΠLi zi‖
2 ≥ n − aσ2

x(k + t +
√
tn) ≥ n/c2

Combining the two previous results with a union bound, with
probability at least 1− 5e−n/c1 :

z>i A−1
−i zi ≥

n

c3

(∑
j>k λj + λk+1n

)
λ2
i z
>
i A−2
−i zi(

1 + λiz>i A−1
−i zi

)2
≥

c3

(∑
j>k λj + λk+1n

)
λin

+ 1

−2

z>i A−2
−i zi(

z>i A−1
−i zi

)2
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Proof Sketch of Lower Bound on the Trace (cont.)

Using Corollary 13 again and the Cauchy-Schwarz Inequality, we obtain
our desired result with proper choice of c4:

z>i A−2
−i zi(

z>i A−1
−i zi

)2
≥

z>i A−2
−i zi∥∥A−1

−i zi
∥∥2 ‖zi‖2

=
1

‖zi‖2
≥ 1

n + aσ2
x(t +

√
nt)
≥ 1

c4n
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Applications and Future Work

Benign overfitting was first observed in deep neural networks

Theorem 4 is connected to neural tangent kernels (NTKs), which are
regimes where neural networks can be well-approximated by linear
functions

NTKs generally have high dimension and slowly decaying eigenvalues
of the covariates, which are required for benign overfitting

However, it is an open question of whether a version of Theorem 4
can be applied more generally to neural networks
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