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Work Covered

This work covers [BLLT20]. Essentially, this paper gives a tight bound for
the excess risk of a linear predictor in the overparametrized regime.

They identify nearly exactly a subregime called the “benign overfitting”
subregime, where overfitting occurs; yet the excess risk does not suffer too
much. We will first describe the motivation, then a setup, and then a
description of the regime and how it arises.
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Classical Statistical Learning Theory

@ Many of the models we have seen in class have very few parameters
in them.

@ However, most deep models have a much larger number of
parameters, frequently far more than the number of data points.

@ In statistical learning theory, we are taught that models which fit
every data point exactly cannot possibly generalize.
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Classical Statistical Learning Theory

@ Somehow models in the real world both interpolate and have low test
loss.

@ How is this possible?

@ Informally, all the memorization has to go into dimensions that are
somewhat inessential for the prediction.
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Benign Overfitting: Practice

@ Many times when we use deep neural networks, we can add lots of
noise to the training set, and the models (which are trained using
standard cross-entropy losses) will continue to perform well. See, for
example, [CWK20, HZZ20].

@ This is quite strange — it seems that the overfitting doesn’t actually
hurt the network. This begs the question: maybe the overfitting
doesn’t matter?

@ To make the problem more tractable, we look at the linear regression
case.
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Benign Overfitting: Practice

Definitions

@ Because we consider regimes where n < p, it is often the case that

several estimators will achieve minimum least squared loss. Thus, we
define the min-norm estimator.

Definition (Min-Norm Estimator)

Define § to be min-norm estimator if and only if it solves the following
optimization problem:

min||9|\2
OcH

such that || X0 — y|*> = mﬁin IXB - y|?
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Benign Overfitting: Practice

Some prior work

@ Generally speaking, most generalization bounds show that 0 ~ 0*.

@ However, the notion of approximation is crucial — we often don't have
|0—e|| o
2

@ Instead, we look at the excess risk

Exylly —x"0)> —(y —x"6")] = (0 —6")"2(6 - 6") =

model risk optimal risk
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Thinking about the problem

@ One way to think about the problem is that in a linear regression
problem, X is basically enough to fully specify a data generating
process.

@ Thus, any insight we can obtain as to why overfitting happens can
only come from thinking about the spectrum of X, A1 > Xp,... > Aq.
These d numbers uniquely determine the risk of the algorithm!
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A teaser

Theorem ([BLLT20], Theorem 6)
If u(X) = k=*In"P(k + 1), then T is benign iffa = 1 and 8 > 1. J
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Our Implementation

We implemented the algorithm described Google's JAX library, which is an

extension to the NumPy library. Our code can be found at this GitHub
repository.
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https://github.com/kfoldcrossvalidator/BenignOverfitting-JAX
https://github.com/kfoldcrossvalidator/BenignOverfitting-JAX

Table of Contents

© Benign Overfitting: Theory

Benign Overfitting ey, 2ol il



Benign Overfitting: Theory

Benign Overfitting: Theory

@ How can we decide whether overfitting is a concern in a regression

problem?
@ Intuitively, there are two constraints to the complexity of the problem

we must consider:

e The scale of the problem should be small compared to the sample size
- the eigenvalues must decay relatively quickly

e The problem must not be dominated by its largest eigenvalues.
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Benign Overfitting: Theory

Further Definitions

@ Let uk(X) denote the k-th largest eigenvalue of ¥.

@ To constrain the complexity of the regression problem, we construct
the notions of effective ranks.

Definition (Effective Ranks)

If ¥ is a covariance matrix, and A\; = p;(X) for i = 1,2,..., then define:
2
Zi>k Aj (Zi>k )‘i)
>‘k+1 Zi>k )‘:2

@ By bounding the excess risk using effective ranks, we will be able to
classify ¥ as benign based on its eigenvalues.

rk(Z) = Rk(Z) =
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Main Result

Theorem (Theorem 4)

Let k* = min{k > 0: r(X) > bn}. Let 6 < 1 such that log(1/5) < n/c.
Then, there exist constants b, c, c; > 1 such that the following holds.
If k* > n/cy, then ER(A) > 02/c

Otherwise,

RE) < c (ne*u =) max{ E) o) [los1/o) })

+ clog(1/6)0§ <

Rk*

with probability at least 1 — 0. Additionally, ER(

>

>2”ff(%+&%<z))-
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Main Result

Theorem (Theorem 4)

Let k* = min{k > 0: r(X) > bn}. Let 6 < 1 such that log(1/J) < n/c.
Then, there exist constants b, c, c; > 1 such that the following holds.
If k* > n/cy, then ER(A) > 02/c

Otherwise,

A . n(X) n(x log(1/6
RE) < c 1677 [l max { |/ 2 oE) ] [log1/o)

+ clog(1/)o? (k * Rk(z))

with probability at least 1 — §. Additionally, ER() > o (k—n* + ﬁ)

c

v
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Main Result

Theorem (Theorem 4)

Let k* = min{k > 0: r(X) > bn}. Let 6 < 1 such that log(1/d) < n/c.
Then, there exist constants b, c, c1 > 1 such that the following holds.
If k* > n/cy, then ER(A) > 02/c

Otherwise,

A N n(X) rn(X log(1/6
RE) < c | 162 [ max (/L2 (2] floBl/0)

+c|og(1/5)o}2, ( k; + R,;(Z))

with probability at least 1 — §. Additionally, ER(f) > %2 (k—; + ﬁ(ﬁ)

v
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Main Result

Theorem (Theorem 4)

Let k* = min{k > 0: r(X) > bn}. Let 6 < 1 such that log(1/d) < n/c.
Then, there exist constants b, c, c1 > 1 such that the following holds.
If k* > n/cy, then ER(A) > 02/c

Otherwise,

RO) < | 110712 5] max { |/ 0(E) o) |, Jlog(1/9)

n n n

+ clog(1/8)0? ( kr;k + Rk*n(z) >

with probability at least 1 — §. Additionally, ER(f) > "72 (k—n* + ﬁ(ﬁ)

v
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Benign Overfitting: Theory

Examples of Benign Problems

Definition (Corollary to Theorem 4)

A covariance operator ¥ is benign if

(X)L ko n
lim = Ilim "= Ilm ——=—< =0
n—o0 n n—oco N n—00 Rk,’; (Zn)

Theorem (Theorem 6)
Q If uk(X) = k~*In"P(k + 1), then X is benign iffa =1 and 8 > 1.
Q If

_ Yk +en  ifk < pp
#oc (2n) = { 0 otherwise

and vy, = ©(exp(—k/1)), then ¥, is benign iff p, = w(n) and
ne—°(n — €nPn = O(n)'

v
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Excess Risk Bound in terms of the Trace
Theorem (Lemma 7)

R(D) < 20" B + co? log % tr(C)
with probability at least 1 — §. Additionally,

E.R(0) > 6*T BO* + 52 tr(C)

where

B = </ ~XT (XXT)_l x) T (/ ~XT (XXT>_1X>

C= (XXT)%XZXT (XXT) -

@ We can come up with bounds on 6* T B6* based on [KL17]
@ Thus, the core of this proof is to bound tr(C).
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Proof of Lemma 7

Using the fact that y — x 6* has zero mean:

R(0) =E,, (y — XTé>2 —-E (y - XTQ*)Z

)
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Benign Overfitting: Theory

Proof of Lemma 7 (cont.)

R(d) = Ey (XT </ ~XxT (XXT>_1 X) 0 —xTXT (XXT)_l s>2

_1 2
< 2E, <xT (/ X7 (XXT) X) 9*)
_1N\2
12K, <XT)<T (XXT) 5)
= 20*BO* +2¢ ' Ce

Lemma 36 from [PG19] finishes the proof by showing

e Ce < a?tr(C)(2t +1) +20°/tr(C)2 (2 + t) < (4t + 2)0? tr(C)
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Benign Overfitting: Theory

Trace Decomposition

Theorem (Lemma 8)

Consider a covariance operator . and X\, > 0. Write its spectral

decomposition = =} )\jvjvJ-T, where the orthonormal v; € H are the

eigenvectors corresponding to the \;. For i with \j > 0, define
zj = Xvi/\/\i. Then,

-2
tr(C) Z A2zl Z)‘ZJ z;
i
Furthermore, if \; > 0, letting A_; = Zﬁﬁ, Aj zj , we have
- 2T g2
T ZAijZjT 2 Az Az

(14 Nz A”1z)?
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Key Step

One of the most important steps is an understanding of the eigenvalues of
A

Lemma

There is a constant ¢ such that for any k > 0 with probability at least
1—2e~"/,

1
E Z)\j — c)\k+1n < Mk-i—l(Afi) <c Z )\j + )\k+1n

Jj>k >k

and if n(X) > bn,

1
E)\k-i-lrk(z) < pn(AZi) < ppr1(A=i) < chpgarne(X).
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Benign Overfitting: Theory

Upper Bound on the Trace

Lemma

There are constants b,c > 1 such that if 0 < k < n/c, r(X) > bn, and
| < k then with probability at least 1 — 7e~"/¢,

tr(C) < c(; + n(%%;:jiﬁ)
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Benign Overfitting: Theory

Sketch of Upper Bound on Trace

The idea is to write

/ 2 T -2
Z iz A Z' +Zx\2 TA Z;

i>1

so it suffices to bound each set of terms independently.
For the first set of terms, we can obtain that

T a2 22 |zl
zi A7z < pn(A-i) " lzif|” < YT
and (where I, is a projection onto the lowest n — k eigenvectors of A_;).
27 T 1 2 INg,z||?
AZlz > (Ngz) AT (Ng2) 2 pusa(A-) 7 I(Ng2) ) 2 (@)
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Upper Bound on the Trace, contd.

For the second sum we get

i ¥zl
)\2 TA zi < /J' _ 2A2” H 51 i>1 7N /
; I ; (A=) “ (Aks1re(X))?
This can be bounded with standard concentration inequalities.
Lemma

Suppose {\j}2; is a non-increasing sequence of non-negative numbers
such that 21 \j < oo, and {;}5°, are independent centered
o-subexponential random variables. Then for some universal constant a
for any t > 0 with probability at least 1 — 2e™ ¢,

Z)\,‘f,‘ < ao max t)\l,\/tzzi)\?
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Benign Overfitting: Theory

Lower Bound on the Trace

Lemma

There is a constant ¢ such that for any i > 1 with \; > 0, and any
0 < k < n/c, with probability at least 1 — 5e—n/c,

Nz ARz > 1 (1 + sk N+ M > -
(L+ Xzl A}z)2 ~ cn n\;
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Proof Sketch of Lower Bound on the Trace

@ The proof relies on several previous results [Lemma 10, Corollary 13]
but we demonstrate the style of proofs used in this paper to establish
the main result, as well as the other lemmas presented.

o Lemma 10 establishes that with probability 1 — 2e~"/¢1

1M, zi]|?

Cc1 (Zj>k )\J' + )\k+1n)

z,-TA:;-lz,- >
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Proof Sketch of Lower Bound on the Trace (cont.)

e Corollary 13 establishes that with probability at least 1 — 3e~"/
INz,z||> > n—ac?(k +t +/tn) > n/c

@ Combining the two previous results with a union bound, with
probability at least 1 — 5e~"/cL;

7 Alz > !
a3 (Z_j>k Aj+ )\k+1’7)
—2
)\%ZI-TA:I?Z,' a (Zj>k Aj + Ak ”) ziTAjzz,-
> vl LR
(1+NzT AT z)° A (77 A% )

Benign Overfitting o, 2ol 2l



Proof Sketch of Lower Bound on the Trace (cont.)

Using Corollary 13 again and the Cauchy-Schwarz Inequality, we obtain
our desired result with proper choice of ¢:

z AT}z 7 AZ}z,
S 22 22
(z,-TA_}z;) H/‘L}L‘H | zi|
1 1 1
> >
lail® = n+ aok(e+/nt) — can
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Applications and Future Work

@ Benign overfitting was first observed in deep neural networks

@ Theorem 4 is connected to neural tangent kernels (NTKs), which are
regimes where neural networks can be well-approximated by linear
functions

@ NTKs generally have high dimension and slowly decaying eigenvalues
of the covariates, which are required for benign overfitting

@ However, it is an open question of whether a version of Theorem 4
can be applied more generally to neural networks
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