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Abstract

In this expository note, we develop some of the theory regarding Kloosterman sums, and
show how they can be applied to solve certain problems. First, we calculate estimates on the
Kloosterman sums for prime p. Then, we show how this can be used to bound the number of
solutions to ab ≡ c (mod p) for a, b ∈ (Z/pZ)∗.

Then, we provide two refinements of the original Kloosterman sums, one for nonprime
moduli and one in the form of the Salié sum. We use these results to derive refinements and
generalizations to the ab ≡ c (mod p) problem.

1 Introduction

In analytic number theory, and in math writ large, there are often questions whose answers can
be “guessed" in one way or another. Sometimes these guesses are right, and sometimes they are
wrong. Often by using probabilistic heuristics, we can obtain guesses to the answers of certain
questions. Yet proving that these guesses are correct can often be much, much harder – arguably
the Riemann Hypothesis is a perfect example of this, in the sense that it states the prime counting
function π(x) should be very close to li(x).

In this note, we will first describe the rich theory of Kloosterman sums, and derive some
properties. Then, we will show how they can be used to solve a particularly interesting problem
whose answer should be “guessable". To conclude, we will give a generalization of the theory
of Kloosterman sums to Salié sums, which allow further work on the aforementioned guessable
problem.

2 Kloosterman sums

The Kloosterman sum is defined as

Kp(a, b) :=
∑

n∈(Z/pZ)∗
ep(an+ bn−1).

where eN (x) = e2πix/N , where n−1 is the inverse in Z/pZ.
When a, b = 0, we have that Kp(a, b) = p − 1, and when exactly one of a, b is zero we have

Kp(a, b) = −1. It remains to handle Kp(a, b) for a, b ∈ (Z/pZ)∗.
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First, to slightly simplify the expression, note that n 7→ bn is a bĳection on (Z/pZ)∗. We thus
substitute to obtain

Kp(a, b) =
∑

n∈(Z/pZ)∗
ep(an+ bn−1)

=
∑

n∈(Z/pZ)∗
ep(a(bn) + b(bn)−1)

=
∑

n∈(Z/pZ)∗
ep(abn+ n−1)

= Kp(ab, 1).

Thus to evaluate all Kloosterman sums, it suffices to evaluate Kp(c, 1) for all c. Also, note that
substituting −n in for n (again noting that it’s a bĳection) gives us Kp(a, b) = Kp(−a,−b). Now,

Kp(a, b) =
∑

n∈(Z/pZ)∗
ep(an+ bn−1) =

∑
n∈(Z/pZ)∗

ep(−an− bn−1) = Kp(−a,−b)

which implies Kp(a, b) ∈ R as desired.
Evaluating individual Kloosterman sums is a rather daunting task. Thus, we will try instead to

calculate aggregate properties of Kloosterman sums, which will turn out to be much more tractable.
We write a formula for the sum of all nth powers of Kloosterman sums. Define Sn =∑p−1

b=1 Kp(1, b)
n. Then, we first have

Theorem 2.1. For each integer n ≥ 1,

Sn =
p2

p− 1
Nn(p)− (p− 1)n−1 − 2(−1)n

where Nn(p) is the number of solutions to
∑n

i=1 xi =
∑n

i=1 1/xi = 0 for xi ∈ (Z/pZ)∗.
Proof. We work in Fp. Define H to be the hyperplane corresponding to a1 + a2 + . . . + an = 0,
and let H ′ be the hyperplane corresponding to a−1

1 + a−1
2 + . . . + a−1

n = 0. Furthermore, let
ℓn = (k1, k2, . . . kn) represent n-tuples in ((Z/pZ)∗)n.

First, we can write∑
1≤a≤p−1

Kp(1, a)
n

=
1

p− 1

∑
1≤a,b≤p−1

Kp(a, b)
n

=
1

p− 1

∑
1≤a,b≤p−1

∑
k∈ℓn

ep(a(k1 + k2 + . . .+ kn) + b(k−1
1 + k−1

2 + . . .+ k−1
n ))

=
1

p− 1

∑
k∈ℓn

∑
1≤a≤p−1

ep(a(k1 + k2 + . . .+ kn))
∑

1≤b≤p−1

ep(b(k
−1
1 + k−1

2 + . . .+ k−1
n ))

=
1

p− 1

∑
k∈ℓn

(p1k∈H − 1)(p1k∈H′ − 1)

=
p2

p− 1
|{k ∈ ℓn : k ∈ H ∩H ′}| − 2p

p− 1
|{k ∈ ℓn : k ∈ H}|+ (p− 1)n−1

=
p2

p− 1
Nn(p)−

2

p− 1

∑
k∈ℓn

p1k∈H + (p− 1)n−1 (1)
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where we’ve used the fact that the number of solutions to k1 + k2 + . . . + kn ≡ 0 (mod p) in
ℓn is equal to the number of solutions to k−1

1 + k−1
2 + . . . + k−1

n ≡ 0 in ℓn (which can be seen by a
straightforward bĳection).

It remains to find
∑

k∈ℓn p1k∈H . To find this, we use a similar trick.

∑
k∈ℓn

p1k∈H =
∑

ki∈(Z/pZ)∗

p−1∑
ℓ=0

ep(ℓ(k1 + k2 + . . .+ kn))

=

p−1∑
ℓ=0

∑
k∈ℓn

e(ℓ(k1 + k2 + . . .+ kn))

=

p−1∑
ℓ=0

∑
k∈ℓn

ep(ℓ(k1))

n

= (p− 1)n + (p− 1)(−1)n

and now substituting this into Equation (1) yields

Sn =
p2

p− 1
Nn(p)− (p− 1)n−1 − 2(−1)n

and we may conclude.

Now, we calculate the values of Nn(p) for various values of n.

Lemma 2.2. N1(p) = 0, N2(p) = p − 1, N3(p) = (p − 1)(1 + (−3/p)), N4(p) = (p − 1)(3p − 6).
Correspondingly, we have S1 = 1, S2 = p2 − p− 1, S3 = p2χ3(p)+ 2p+1, and S4 = 2p3 − 3p2 − 3p− 1.

Proof. Note that N1(p) = 0, N2(p) = p− 1 by direct arguments.

FindingN3(p) To calculateN3(p), we note that this is equivalent to finding solutions tox−1+y−1 =
(x + y)−1, which after clearing denominators is equivalent to x2 + xy + y2 = 0 which in turn is
equivalent to (2x+ y)2 +3y2 = 0 in (Z/pZ)2, excluding solutions where x = 0, y = 0, or x+ y = 0.
Note that if y 6= 0, any solution to x2 + xy + y2 = 0 must satisfy x 6= 0 and x+ y 6= 0, so it suffices
to find the number of solutions when y 6= 0.

When y 6= 0, the number of solutions for x is equal to 1 + (−3/p). This gives us N3(p) =
(p− 1)(1 + (−3/p)), and

(−3/p) = (−1/p)(3/p) = (p/3)(−1/p)2 = (p/3) = χ3(p)

from quadratic reciprocity. Thus, we get

S3 = p2(1 + χ3(p))− (p− 1)2 + 2 = p2χ3(p) + 2p+ 1.

Finding N4(p) To calculate N4(p), we note (by substituting a3 7→ −a3, a4 7→ −a4) that it’s
equivalent to finding the number of solutions to a1+a2 ≡ a3+a4 (mod p) and a−1

1 +a−1
2 ≡ a−1

3 +a−1
4

(mod p). Note that it suffices to calculate nxy, the number of solutions to a1+a2 = x, a−1
1 +a−1

2 = y,
because then the answer will simply be

∑
x,y n

2
xy.

Note that n0ℓ = p − 1 if ℓ = 0 and n0ℓ = 0 otherwise. Now, we find nxy for x 6= 0. Note that
nx0 = 0, so it suffices to find nxy for x, y 6= 0. Now, we can see that a−1

1 + a−1
2 = (a1a2)

−1(a1 + a2),
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so it suffices to determine the number of values attained by a1a2 = a1(x− a1). It will takes on the
value of x2/4 exactly once (when a1 = x/2) and takes on all other values exactly twice (at most
twice because a quadratic has at most two roots, and at least twice because plugging in a1 and
x− a1 yield the same result.

Thus, for each x, nxy = 2 for precisely (p − 3)/2 values of y, nxy = 1 for one value of y, and
nxy = 0 for all other values of y.

The above discussion yields∑
x,y

n2xy = (p− 1)2 + (p− 1)(12 + (p− 3)/2 · 22) = (p− 1)2 + (p− 1)(2p− 5) = (p− 1)(3p− 6).

Finally, using Theorem 2.1 we have

S4 = (3p− 6)p2 − (p− 1)3 − 2 = 2p3 − 3p2 + 3p− 1,

and we’re done.

It turns out that finding this value for higher powers like n = 5, 6 . . . and so on is much more
difficult and requires nonelementary functions. Nonetheless, note that the n = 4 case alone is
enough to conclude that |Kp(a, b)| ≤ 21/4p3/4, which is already enough for many applications. It
turns out that a far stronger bound is possible – namely

Theorem 2.3 ([Wei48]). |Kp(a, b)| ≤ 2
√
p for all p.

– but the proof is beyond the scope of the paper, and we will not cover it here.
Our method for pinning down the Ka,b relied on using the moments of the distribution. It’s a

well known that the moments of a distribution generally tend to yield information on the distri-
bution itself. An analagous idea is used in the celebrated method of moments from economics and
statistics. This begs the question – can we calculate the asymptotic distribution of {Kp(1, b)}p−1

b=1?
The answer somewhat miraculously turns out to be yes, as shown in [Kat88].

Theorem 2.4 (Sato-Tate distribution). For each t1, t2 with −2 ≤ t1 ≤ t2 ≤ 2, as p → ∞ the proportion
of (a, b) such that p−1/2Kp(a, b) ∈ [t1, t2] approaches (2π)−1

∫ t2
t1

√
4− θ2dθ.

While we will not be able to give a complete proof of Theorem 2.4, we can calculate the
moments of the Sato-Tate distribution, and show that they are consistent with the values implied
by Lemma 2.2.

First, we give the moments of the Sato-Tate distribution.

Lemma 2.5 (Sato-Tate Moments). Let Z be a random variable distributed as the Sato-Tate distribution, so
the probability that Z ∈ [t1, t2] is (2π)−1

∫ t2
t1

√
4− θ2dθ. Then, for n ≥ 0

E[Zn] =

{
0 if n = 2k + 1, k ∈ Z
Ck if n = 2k, k ∈ Z

where Ck = 1
k+1

(
2k

k

)
is the kth Catalan number.
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Proof. The odd moments of Z are clearly 0. To find the even moments, note that if we let (X,Y )
be distributed as a random point chosen inside of a disk centered at the origin with radius 2, we
have Z ∼ X . With polar coordinates, we can write X as R cos(θ), so R ∼ 2Beta(2, 1) ∼ 2U1/2, and
θ ∼ Unif[0, 2π]. Then, since X is distributed according to the semicircle distribution, note that

E[X2n] = E[R2n cos(θ)2n]

= 22nE[Un]E[cos(θ)2n] (2)

=
22n

n+ 1

1

2π

∫ 2π

0

(
eiθ + e−iθ

2

)2n

dθ

=
1

n+ 1

1

2π

∫ 2π

0

2n∑
k=0

(
2n

k

)
e(2k−2n)iθdθ

=
1

n+ 1

1

2π

2n∑
k=0

∫ 2π

0

(
2n

k

)
e(2k−2n)iθdθ

=
1

n+ 1

(
2n

n

)
which is the nth Catalan number, as each term in the sum (except k = n) vanishes. Another

method of evaluating Equation (2) is by expressing it as a Beta Integral.

Now we check that Lemma 2.2 is consistent with Theorem 2.4.
Formally, one can state Theorem 2.4 as saying

1
√
p
DUnif{Kp(1, b)|1 ≤ b ≤ p− 1} L−→ S,

where S follows the Sato-Tate semicircle distribution.
Note that if this is true, the moments of the LHS and RHS must be equal as p → ∞. And now

we can check this for the lower moments. Observe that the moments of the LHS are

Mn,p :=
1

pn/2+1

p−1∑
b=1

Kp(1, b)
n =

Sn

pn/2+1
.

For n = 1, we haveMn,p → 0. For n = 2, we haveMn,p → 1. For n = 3, we haveMn,p → 0. And
for n = 4, we have Mn,p → 2. These are consistent with the moments obtained from Lemma 2.5.

3 A “guessable" problem

We will now consider a problem whose answer appears to be "guessable".

Letting I, J be intervals in R/pZ, find the number of a, b so that ab = c (mod p) and a ∈ I, b ∈ J .

Of course the answer to this question is "obvious". It should just be |I||J |/p. Is this right? This
relationship superficially resembles certain edge concentration results in expander graphs:

Theorem 3.1 ([Vad12], Lemma 4.15). Let G be a D-regular, N -vertex undirected graph with spectral
expansion 1− λ. Then for all sets of vertices I, J of densities α = |I|/N and β = |J |/N , we have

1

N

∣∣∣∣e(I, J)D
− |I||J |

N

∣∣∣∣ = ∣∣∣∣e(I, J)N ·D
− |I||J |

N2

∣∣∣∣ = ∣∣∣∣e(I, J)N ·D
− αβ

∣∣∣∣ ≤ λ
√
αβ.
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Proof. The key idea in the proof is to write χS and χT to be the vectors corresponding to character-
istic functions of the sets S and T respectively.

Now it suffices to look at (where A is the adjacency matrix of G)∣∣∣∣e(S, T )N ·D
− αβ

∣∣∣∣ = ∣∣∣∣χ⊤
SAχT

N ·D
− αβ

∣∣∣∣
=

∣∣∣∣(α1 + χ⊥
S )

⊤A(β1 + χ⊥
T )

N ·D
− αβ

∣∣∣∣
=

∣∣∣∣(χ⊥
SAχ

⊥
T )

N ·D

∣∣∣∣
≤ λ

√
αβ

as |χ⊥
S | =

√
Nα(1− α) and |χ⊥

T | =
√
Nβ(1− β). and we may conclude.

The key idea in this proof was looking at χS and χT in an orthogonal eigenbasis, and using the
fact that all the eigenvalues of A are quite small.

However, it’s clear that such a universal approach cannot work for our problem, because there
are large I , J for which no such ab ≡ c (mod p) – for example, take I to have size p/2, and let J
contain every number not of the form c/i for i ∈ I . Thus, such solutions will not easily generalize to
this setting.

However, the first step is still similar, as we can decompose the characteristic functions of I and
J in a Fourier basis. The key difference, and what allows us to refine our bounds, is that by virtue
of being intervals, we can calculate the Fourier coefficients explicitly – and they will be small. Of
course, this means that any characteristic functions with small Fourier coefficients will also work,
a fact we take to its logical conclusion in Theorem 3.3.

Let
U(N) = max

(a,b)̸=(0,0)
|KN (a, b)|.

Then the results from the previous part give us that U(p) < 2
√
p (Theorem 2.3) and U(p) <

21/4p3/4 (Lemma 2.2). We state our results in terms of U , in order to show how bounds on U
naturally lead to bounds in the Kloosterman sums. This is done to make it precise how bounds on
U directly lead to better bounds on various problems we seek to solve.

Theorem 3.2. The number M of solutions (x, y) ∈ I × J to xy ≡ c mod p is AB/p+O(U(p) log2 p).

Proof. Letting χ, ψ be the characteristic functions of I, J , the number of solutions to our equation
is given by

M =
∑

n∈(Z/pZ)∗
χ(n)ψ(cn−1)

We can now decompose χ, ψ into the Fourier basis, so

χ(x) =
∑

a mod p

χ̂(a)ep(ax) and ψ(x) =
∑

b mod p

ψ̂(b)ep(bx)

We now have that

M =
∑

n mod p

∑
a,b mod p

χ̂(a)ψ̂(b)ep(ax+ bcx−1) =
∑

a,b mod p

χ̂(a)ψ̂(b)Kp(a, bc).
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Now, note that we can bound

|M − χ̂(0)ψ̂(0)(p− 1)| ≤ max
(a,b)̸=(0,0)

|Kp(a, b)|
∑

a,b (mod p)

|χ̂(a)||ψ̂(b)| = U(p)
∑

a,b (mod p)

|χ̂(a)||ψ̂(b)|

We now bound each element of χ̂(a). For a = 0, we have that |χ̂(a)| ≤ 1. For a 6= 0, note that
we have

|χ̂(a)| =

∣∣∣∣∣1p∑
x∈I

e2πaxi/p

∣∣∣∣∣ =
∣∣∣∣∣1p e2πia(Imax+1)/p − e2πiaImin/p

e2πia/p − 1

∣∣∣∣∣ ≤ 2

p

∣∣∣∣ 1

e2πia/p − 1

∣∣∣∣ = 1

p sin(πa/p)
� 1

p‖a/p‖

where ‖x‖ is the absolute difference between x and the nearest integer.
We can now bound

∑
a,b (mod p) |χ̂(a)||χ̂(b)| � log2 p by a simple calculation and we may

conclude.

Now a direct consequence of this lemma is
Corollary 3.2.1. If AB is a sufficiently high multiple of pU(p) log2 p then there are x ∈ I, y ∈ J such that
xy = c (mod p).

With slightly more work, we can remove the log-factors.
Theorem 3.3. Suppose I, J ⊆ Z/pZ are intervals of sizes A,B with AB ≥ 4p2U(p)/(p− 1). Then there
are x ∈ I, y ∈ J such that xy ≡ c (mod p).
Proof. The key idea is to replace χ, ψ by functions f, g supported on I, J whose Fourier coefficients
will be altogether smaller. This yields an estimate on M ′ =

∑
n∈(Z/pZ)∗ f(n)g(cn

−1) instead of M ,
but this is okay as if there are no solutions (x, y) ∈ I × J of xy ≡ c mod p then M ′ vanishes.

Let χ0 be the characteristic function for any interval of width A′ = dA/2e, and let f0 be the
convolution (χ0 ∗χ0)/A

′. This function is supported on [−A′, A′]. Then because f0 is a convolution
of a function with itself, all of its Fourier coefficients are positive (as self-convolution in the time
basis is squaring in the frequency basis). Finally, define f to be a translate of f0 which is supported
on I . Define g similarly for the interval B.

Now, we can write ∑
a mod p

|f̂(a)| =
∑

a mod p

|f̂0(a)| =
∑

a mod p

f̂0(a) = f0(0) = 1

Thus, by the same arguments as on the previous part we have

|M ′ − f̂(0)ĝ(0)(p− 1)| ≤ U(p)
∑

a,b mod p

|f̂(a)||ĝ(b)| = U(p)

so that we have (since f̂(0) = A′/p and ĝ(0) = B′/p)∣∣∣∣M ′ − p− 1

p2
A′B′

∣∣∣∣ < U(p)

and thus ifM ′ = 0 then A′B′ < p2U(p)/(p− 1) and AB ≤ 4A′B′ < 4p2U(p)/(p− 1) as desired.

Note that even using the strongest bound we have for U(p) (2√p) only gives a p3/2 bound in
Theorem 3.3. It is conjectured that we can strengthen 3/2 to 1 + ϵ, but it is not known definitively
whether 3/2 can even be improved to 3/2− ϵ. Compare this to the much easier lemma that holds
when instead of needing ab ≡ c (mod p), we need ab−1 ≡ c (mod p).
Lemma 3.4 ([Thu02]). For any prime p and integer 1 ≤ a ≤ p, there exists |x| < d√pe, 0 < y < d√pe so
that ay ≡ x (mod p).
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4 Extensions

In this section, we consider two different extensions: one of Kloosterman sums to nonprime N ,
and one to the Salié sums, which appear to be more complicated than Kloosterman sums but in
actuality are much simpler.

4.1 Generalized Sums

4.1.1 Nonprime bases

Prime Powers Kloosterman sums can sometimes be evaluated for prime powersN = pk, but the
analysis can be quite complicated, and we do not go into more details here.

General Composite Numbers In many multiplicative number theory problems, we can solve the
problem on general composite numbers by breaking it up into many prime powers, and then by
applying the Chinese Remainder theorem. This is precisely what we will use here.

To evaluate
KN (a, b) =

∑
n∈(Z/NZ)∗

eN (an+ bn−1),

where N = pe11 p
e2
2 . . . pezz , note first that it’s far from clear how to even enumerate all members

of (Z/NZ)∗! One way to organize the sum would be to find a function g(c1, c2, . . . cz) (where
ci ∈ (Z/peii Z)), which gives the number v ∈ (Z/NZ)∗ so that v ≡ ci (mod pi). Then, in theory we
would just have to sum ∑

ci∈(Z/p
ei
i Z)

∗

eN (ag(c1, c2, . . . , cz) + bg(c−1
1 , c−1

2 , . . . , c−1
z )).

However, in its current form we are no closer to a solution. It will turn out, however, that g is a
linear function! Note that we can write

g(c1, c2, . . . , cz) =
∑
i

ci
Ndi
peii

,

where di is chosen so di(N/peii ) ≡ 1 (mod pi). Now we can simply write

KN (a, b) =
∑

n∈(Z/NZ)∗
eN (an+ bn−1)

=
∑

ci∈(Z/p
ei
i Z)∗

eN

(∑
i

aci
Ndi
peii

+
∑
i

bc−1
i

Ndi
peii

)

=
z∏

i=1

 ∑
ci∈(Z/p

ei
i Z)∗

eN

(
aci

Ndi
peii

+ bc−1
i

Ndi
peii

)
=

z∏
i=1

 ∑
ci∈(Z/p

ei
i Z)∗

epeii

(
acidi + bc−1

i di
)

=
z∏

i=1

Kp
ei
i
(adi, bdi)
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4.1.2 Salié Sum

The Salié sum is defined as S′
p(a, b) =

∑p−1
n=1 χ(n)ep(an+ bn−1) where χ is the nontrivial real char-

acter modulo p. While the Salié sum appears to be more difficult to evaluate than the Kloosterman
sum, quite the opposite is true!

Theorem 4.1 (Salié Sum). If a, b are relatively prime to p, then the Salié sum

S′
p(a, b) = g(a; p)

∑
y2≡4ab

ep(an)

where g(a; p) =
∑p−1

n=0 χ(n)ep(an) is a Gauss sum.

Proof. Note that S′
p(a, b) = 0 when ab is a QNR (Quadratic Non-Residue). To see this, note that if

ab is a QNR, so is b/a. Then, we have (via the bĳection n 7→ b/an)

S′
p(a, b) =

p−1∑
n=1

χ(n)ep(an+ bn
−1) =

p−1∑
n=1

χ(b/an)ep(a(b/an)+ b(b/an)
−1) = −

p−1∑
n=1

χ(n)ep(an+ bn
−1)

implying that when ab is a QNR, the Salié sum is zero, as the equation would imply.
Now suppose that ab is a quadratic residue, so ab = u2. We can write

S′
p(a, b) =

p−1∑
n=1

χ(n)ep(an+ bn−1)

We reduce this to the case where a = b = u. Note that we can calculate (via the bĳection
n 7→ un/a)

S′
p(a, b) =

p−1∑
n=1

χ(n)ep(an+ bn−1) =

p−1∑
n=1

χ(un/a)ep(un+ un−1) = χ(u/a)S′
p(u, u)

Now, we find S′
p(u, u).

Lemma 4.2.

S′
p(u, u) =

p−1∑
n=1

χ(n)ep(un+un
−1) = g(u; p)(ep(2u)+ep(−2u)) =

(
p−1∑
n=1

χ(n)ep(un)

)
(ep(2u)+ep(−2u))

Proof. To complete this proof, we compare the coefficients of ep(au) for each a ∈ 0, 1, . . . p − 1 (in
other words, we prove that the Fourier coefficients are equal). On the RHS, we obtain a coefficient
of χ(a− 2) + χ(a+ 2). On the LHS, we get ∑

k,k+k−1=a

χ(k)

It now suffices to show that these are always equal, which we do via casework on χ(a + 2) +
χ(a− 2).

Claim.
χ(a− 2) + χ(a+ 2) =

∑
k,k+k−1=a

χ(k).
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Proof. If a2− 4 is not a quadratic residue, then the RHS is zero by the quadratic formula. Likewise,
since χ(a− 2)χ(a+ 2) = −1, the LHS will be zero.

If a2 − 4 is a quadratic residue, then a − 2 = bu2, a + 2 = bv2, note that the solutions for k are
(−a±

√
a2 − 4)/2 = b((u− v)/2)2, b((u+ v)/2)2. Then, all we need to show is

χ(a−2)+χ(a+2) = χ(bu2)+χ(bv2) = 2χ(b) = χ(b((u−v)/2)2)+χ(b((u+v)/2)2) =
∑

k+k−1=a

χ(k).

and we may conclude.

Now, note that

S′
p(a, b) = χ(u/a)S′

p(u, u) = χ(u/a)g(u; p)(ep(2u) + ep(−2u)) = g(a; p)(ep(2u) + ep(−2u))

and we may conclude.

Since Gauss sums have absolute value √
p, and the a = 0, b 6= 0 and a 6= 0, b = 0 reduce to

Gauss sums, we have.
Corollary 4.2.1. Any Salié sum K ′

p(a, b) when (a, b) 6= (0, 0) has absolute value at most 2√p.

4.2 Generalizations of Section 3

In this section, we generalize the results of section 3 to nonprime bases.

4.2.1 Nonprime Bases

Straightforwardly applying the results of section 3, we obtain the following generalizations of
Theorem 3.2 and Theorem 3.3. Recall that U(N) is the bound on all Kloosterman sums of the form
KN (a, b) where (a, b) 6= (0, 0).
Theorem 4.3. The number M of solutions (x, y) ∈ I × J to xy ≡ c mod p is AB/N + U(N) log2(N)

Theorem 4.4. Suppose I, J ⊆ R/NZ are intervals of sizes A,B with AB ≥ 4N2U(N)
N−1 . Then there are

x ∈ I, y ∈ J such that xy ≡ c (mod N).

4.3 Salié Sums

Now we show how Salié sums can be used to refine Theorem 3.2 and Theorem 3.3.
Theorem 4.5. The number of solutions (a, b) so that ab ≡ c mod p and χ(a) = 1 minus the number of
solutions (a, b) so that ab ≡ c mod p and χ(a) = −1 has absolute value at most O(

√
p log2(p)).

Proof. We bound the expression given by (where fI and fJ are the characteristic functions of I, J
respectively)

M = #{a, b s.t. χ(a) = 1, ab ≡ c mod p} −#{a, b s.t. χ(a) = −1, ab ≡ c mod p}

=
∑

n∈(Z/pZ)∗
χ(n)fI(n)fJ(cn

−1)

=
∑

n∈(Z/pZ)∗
χ(n)

∑
a mod p

f̂I(a)ep(an)
∑

b mod p

f̂J(b)ep(bcn
−1)

=
∑∑
a,b mod p

f̂I(a)f̂J(b)
∑

n∈(Z/pZ)∗
χ(n)ep(an+ bcn−1)
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Then by Corollary 4.2.1,

|M − f̂I(0)f̂J(0)(0)| ≤ max
(a,b)̸=(0,0)

|K ′
p(a, b)|

∑
a,b mod p

|f̂I(a)||ĝJ(a)|

≤ O(
√
p log2(p)).

Theorem 4.6. Suppose I, J ⊆ R/pZ are intervals of sizes A,B with

AB ≥ 4p2U(p)

p− 1
+

8p2
√
p

p− 1
.

Then there are x ∈ I, y ∈ J such that xy ≡ c (mod p) and χ(x) = 1 (respectively χ(x) = −1).

Proof. The idea is to look at the expression M ′ =
∑

n∈(Z/pZ)∗(1 + χ(n))f(n)g(cn−1). If we can
bound M ′ away from zero, this implies the result. We break this expression into

S1 + S2, where S1 :=
∑

n∈(Z/pZ)∗
f(n)g(cn−1) and S2 :=

∑
n∈(Z/pZ)∗

χ(n)f(n)g(cn−1)

Note that for the choice of functions f, g used in Theorem 3.3, we have

S1 ≥
p− 1A′B′

p2
− U(p)

and
S2 ≥ −2

√
p

so S1 + S2 ≥ p−1A′B′

p2
− U(p)− 2

√
p > 0 and we may conclude.
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