Space Lower Bounds for Learning Problems

Andrew Gu Franklyn Wang Eric Zhang

Harvard University May 6, 2021

Agenda

- 2 Motivation
- 3 Proof Outline
- 4 Applications

This work covers [Raz17], which subsumes [Raz18].

This work covers [Raz17], which subsumes [Raz18].

(No, that's not a typo!)

This work covers [Raz17], which subsumes [Raz18].

- (No, that's not a typo!)
- Simpler proof, different method of attack, but still proves against branching programs.

This work covers [Raz17], which subsumes [Raz18].

- (No, that's not a typo!)
- Simpler proof, different method of attack, but still proves against branching programs.
- Main theorem can be applied to a broad class of learning problems, which includes but is not limited to parity learning.

Setup

- In our setup, we are trying to properly learn a binary function
 - $f_{ heta}: \mathcal{X} \to \{-1, 1\}$ where $heta \in \Theta$ where \mathcal{X}, Θ are finite sets.
- We are learning θ from samples $(x_i, f_{\theta}(x_i))$ in the streaming setting.

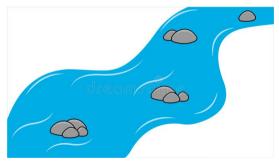


Figure: A stream.

Agenda

2 Motivation

3 Proof Outline

4 Applications

Space-Lower Bounds for Learning

Frequently, lower bounds (whether on space / time) are useful in measuring the absolute limits of what we can accomplish under certain models of learning.

Space-Lower Bounds for Learning

- Frequently, lower bounds (whether on space / time) are useful in measuring the absolute limits of what we can accomplish under certain models of learning.
- For example: this task takes ≥ X amount of space to complete, or ≥ Y amount of time. No program more efficient than this can exist.

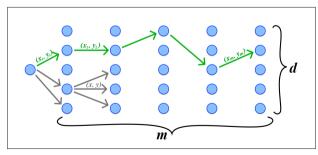
Why streaming lower bounds?

■ In streaming bounds, the model is given sequential access to examples

 $(x_1, y_1), (x_2, y_2), \ldots$

Streaming bounds penalize the number of times a sample is inspected.

■ This type of bound fits in quite well with the branching program framework.



When should lower bounds exist?

We present here two function classes on $\mathbb{F}_2^n \to \{-1, 1\}$ of size 2^n .

An easily learnable function class:

$$\{f_k(\mathbf{x}) \equiv (-1)^k \mid 0 \le k \le 2^n - 1\}.$$

A not so easily learnable function class [Raz18]:

$$\left\{ f_{\mathsf{C}}(\mathsf{X}) = (-1)^{\sum_{i=1}^{n} \mathsf{c}_{i} \mathsf{X}_{i}} \mid \mathsf{C}_{i} \in \{0,1\} \right\}$$

• One sense in which a learning problem can be "hard" is that you have to know θ exactly to find $f_{\theta}(x)$.

Spectral Norm Condition

The result of [Raz17] says that learning is particularly hard when the matrix

$$M = \begin{bmatrix} f_{\theta_1}(x_1) & f_{\theta_2}(x_1) & \dots & f_{\theta_n}(x_1) \\ f_{\theta_1}(x_2) & f_{\theta_2}(x_2) & \dots & f_{\theta_n}(x_2) \\ \vdots & \vdots & & \vdots \\ f_{\theta_1}(x_k) & f_{\theta_2}(x_k) & \dots & f_{\theta_n}(x_k) \end{bmatrix}$$

has a low spectral norm ($||M||_2$ small). Why is this important?

Spectral Norm Intuition

Take $\Theta = \begin{bmatrix} p(\theta_1) & p(\theta_2) & \dots & p(\theta_n) \end{bmatrix}^\top$, letting this be the prior that we have on θ .

Spectral Norm Intuition

- Take $\Theta = \begin{bmatrix} p(\theta_1) & p(\theta_2) & \dots & p(\theta_n) \end{bmatrix}^\top$, letting this be the prior that we have on θ .
- Low spectral norm corresponds to $||M\Theta||_2$ being small when $||\Theta||_2$ is small. $M\Theta$ is

 $\begin{bmatrix} \mathbb{E}_{\theta \sim p}[f_{\theta}(\mathbf{x}_{1})] & \mathbb{E}_{\theta \sim p}[f_{\theta}(\mathbf{x}_{2})] & \dots & \mathbb{E}_{\theta \sim p}[f_{\theta}(\mathbf{x}_{n})] \end{bmatrix}^{\top}.$

Spectral Norm Intuition

- Take $\Theta = \begin{bmatrix} p(\theta_1) & p(\theta_2) & \dots & p(\theta_n) \end{bmatrix}^\top$, letting this be the prior that we have on θ .
- Low spectral norm corresponds to $||M\Theta||_2$ being small when $||\Theta||_2$ is small. $M\Theta$ is

$$\begin{bmatrix} \mathbb{E}_{\theta \sim p}[f_{\theta}(\mathbf{x}_{1})] & \mathbb{E}_{\theta \sim p}[f_{\theta}(\mathbf{x}_{2})] & \dots & \mathbb{E}_{\theta \sim p}[f_{\theta}(\mathbf{x}_{n})] \end{bmatrix}^{\top}$$

Note that when this vector has small norm, it effectively means that we are **uncertain about** $f_{\theta}(x_i)$ just from knowing what Θ is. In some sense, when the spectral norm is small, there are no "shortcuts" to knowing $f_{\theta}(x_i)$ without knowing θ exactly.

Main Theorem

Theorem ([Raz17])

Let Θ, \mathcal{X} be two finite sets. Let $n = \log_2 |\Theta|$. Let $M : \Theta \times \mathcal{X} \to \{-1, 1\}$ be a matrix, such that $\|M^{\top}\|_2 \leq 2^{\gamma n}$ where $\gamma < 1$. For any constant $c' < \frac{1}{3}$, there exists a

constant $\epsilon' > 0$, such that the following holds: Let $c = c' \cdot (1 - \gamma)^2$, and let $\epsilon = \epsilon' \cdot (1 - \gamma)$. Let B be a branching program of length at most $2^{\epsilon n}$ and width at most $2^{\epsilon n^2}$ for the learning problem that corresponds to the matrix M. Then, the success probability of B is at most $O(2^{-\epsilon n})$.

Thus, to learn problems with we either need quadratic space or exponentially many samples.

Agenda

1 Introduction

2 Motivation

3 Proof Outline

4 Applications

Walking Along the Branching Program

A branching program is a *layered* graph whose leaves correspond to the output values of θ (the predicted parameters).

Walking Along the Branching Program

- A branching program is a *layered* graph whose leaves correspond to the output values of θ (the predicted parameters).
- Key idea: Instead of executing the entire program until reaching a leaf, we *truncate* the path after reaching a certain threshold of *significance* at a node.

Walking Along the Branching Program

- A branching program is a *layered* graph whose leaves correspond to the output values of θ (the predicted parameters).
- **Key idea:** Instead of executing the entire program until reaching a leaf, we *truncate* the path after reaching a certain threshold of *significance* at a node.

Theorem

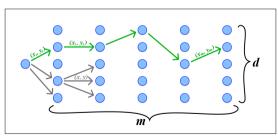
The probability that T reaches a significant vertex is $O(2^{-\epsilon n})$.

Measuring Progress of the Branching Program

The proof defines

$$\mathcal{Z}_{i} = \sum_{\mathbf{v}\in L_{i}} \Pr(\mathbf{v}) \cdot \langle \mathbb{P}_{\theta|\mathbf{v}}, \mathbb{P}_{\theta|\mathbf{s}} \rangle^{n}, \quad i = 1, 2, \dots, m.$$

Using an upper bound on \mathcal{Z}_i , it is shown that any particular significant vertex is reached with low probability.



Agenda

1 Introduction

- 2 Motivation
- 3 Proof Outline

4 Applications

Implications for Learning

- There are surprisingly deep ramifications of space lower bounds on practical machine learning.
- Notably, streaming encapsulates most first-order methods, which use O(D) space, where *D* is the number of parameters.
- Examples: SGD, Adam, AdaGrad, etc.
- Thus, unless $D \gg n^2$, it may actually not be possible to solve the "hard problems" that we've described.
- Partially generalizes why learning parities is hard [SSSS17].

Practical Applications: Filecoin

- Another application of space lower bounds is to cryptocurrencies.
- An example of a "Proof-of-Space" system is the proof of replication used in Filecoin, part of the largest distributed filesystem in the world.

Figure: Filecoin

Using space lower bounds is similar to asking a client to prove that it can store your object, but asking it to solve tasks which require space.

References

🔋 Ran Raz.

A time-space lower bound for a large class of learning problems. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 732–742. IEEE, 2017.

Ran Raz.

Fast learning requires good memory: A time-space lower bound for parity learning.

Journal of the ACM (JACM), 66(1):1–18, 2018.

References

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah.
Failures of gradient-based deep learning.
In International Conference on Machine Learning, pages 3067–3075. PMLR, 2017.