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Work Covered

This work covers [Raz17], which subsumes [Raz18].

m (No, that's not a typo!)

m Simpler proof, different method of attack, but still proves against branching
programs.

m Main theorem can be applied to a broad class of learning problems, which
includes but is not limited to parity learning.
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Setup

m In our setup, we are trying to properly learn a binary function
fo: X = {-1,1} where § € © where X, © are finite sets.
m We are learning 6 from samples (x;,fy(X;)) in the streaming setting.

Figure: A stream.
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Space-Lower Bounds for Learning

m Frequently, lower bounds (whether on space / time) are useful in measuring
the absolute limits of what we can accomplish under certain models of
learning.

m For example: this task takes > X amount of space to complete, or > Y
amount of time. No program more efficient than this can exist.
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Why streaming lower bounds?
m In streaming bounds, the model is given sequential access to examples

(X17y1)7 (Xg,yg), ce

m Streaming bounds penalize the number of times a sample is inspected.
m This type of bound fits in quite well with the branching program framework.
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When should lower bounds exist?

We present here two function classes on Fj — {—1, 1} of size 2".
m An easily learnable function class:

{fex) = (-1)F [0<k<2"—1}.
m A not so easily learnable function class [Raz18]:
{fe0) = (~1)=R 5 | ¢ e {0,1}]

m One sense in which a learning problem can be “hard” is that you have to
know 6 exactly to find fy(x).
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Spectral Norm Condition

The result of [Raz17] says that learning is particularly hard when the matrix

fo.(x1) fo,(X1) ... fo,(X1)
_ fo(x2) fo,(X2) ... fo,(X2)

M

fo(Xk)  fo,(Xk) ... fo,(Xk)

has a low spectral norm (||M||; small). Why is this important?
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Spectral Norm Intuition

m Take © = [p(61) p(b2) ... p(&,,)f, letting this be the prior that we have
on 6.
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m Take © = [p(61) p(b2)
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Spectral Norm Intuition

m Take © = [p(61) p(b2) ... p(&,,)f, letting this be the prior that we have
on 6.

m Low spectral norm corresponds to ||[MO||2 being small when ||©]]5 is small.
MO is -
[Eoplfo(x1)] Eonplfo(x2)] ... Eouplfo(xn)]]

m Note that when this vector has small norm, it effectively means that we are
uncertain about fy(x;) just from knowing what © is. In some sense, when the
spectral norm is small, there are no “shortcuts” to knowing fy(x;) without
knowing 6 exactly.
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Main Theorem

Theorem ([Raz17])
Let ©, X be two finite sets. Let n = log, [©|. Let M : © x X — {—1,1} be a matrix,
such that |MT ||y < 27" where v < 1. For any constant ¢’ < %, there exists a

constant € > 0, such that the following holds: Let c = ¢’ - (1 — v)?, and let

e =¢€ - (1—). Let B be a branching program of length at most 2¢" and width at
most 2¢"* for the learning problem that corresponds to the matrix M. Then, the
success probability of B is at most O(2~").

Thus, to learn problems with we either need quadratic space or exponentially
many samples.
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Walking Along the Branching Program

m A branching program is a layered graph whose leaves correspond to the
output values of # (the predicted parameters).

Learning, Space, and Cryptography Gu, Wang, Zhang 13 /19



Walking Along the Branching Program

m A branching program is a layered graph whose leaves correspond to the
output values of # (the predicted parameters).

m Key idea: Instead of executing the entire program until reaching a leaf, we
truncate the path after reaching a certain threshold of significance at a
node.

Learning, Space, and Cryptography Gu, Wang, Zhang 13 /19



Walking Along the Branching Program

m A branching program is a layered graph whose leaves correspond to the
output values of # (the predicted parameters).

m Key idea: Instead of executing the entire program until reaching a leaf, we
truncate the path after reaching a certain threshold of significance at a
node.

Theorem

The probability that T reaches a significant vertex is O(2~<").
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Measuring Progress of the Branching Program

m The proof defines

2= 3 Pr(v) - (B, Bys)"s i=1,2,....m.

VEL;

m Using an upper bound on Z;, it is shown that any particular significant
vertex is reached with low probability.

Learning, Space, and Cryptography
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Implications for Learning

m There are surprisingly deep ramifications of space lower bounds on
practical machine learning.

m Notably, streaming encapsulates most first-order methods, which use O(D)
space, where D is the number of parameters.

m Examples: SGD, Adam, AdaGrad, etc.

m Thus, unless D > n?, it may actually not be possible to solve the “hard
problems” that we've described.

m Partially generalizes why learning parities is hard [SSS517].
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Practical Applications: Filecoin

m Another application of space lower bounds is to cryptocurrencies.

m An example of a “Proof-of-Space” system is the proof of replication used in
Filecoin, part of the largest distributed filesystem in the world.

Figure: Filecoin

m Using space lower bounds is similar to asking a client to prove that it can
store your object, but asking it to solve tasks which require space.
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