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Work Covered

This work covers [Raz17], which subsumes [Raz18].

(No, that’s not a typo!)
Simpler proof, different method of attack, but still proves against branching
programs.
Main theorem can be applied to a broad class of learning problems, which
includes but is not limited to parity learning.
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Setup
In our setup, we are trying to properly learn a binary function
fθ : X → {−1, 1} where θ ∈ Θ where X , Θ are finite sets.
We are learning θ from samples (xi, fθ(xi)) in the streaming setting.

Figure: A stream.
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Space-Lower Bounds for Learning

Frequently, lower bounds (whether on space / time) are useful in measuring
the absolute limits of what we can accomplish under certain models of
learning.

For example: this task takes ≥ X amount of space to complete, or ≥ Y
amount of time. No program more efficient than this can exist.
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Why streaming lower bounds?
In streaming bounds, the model is given sequential access to examples

(x1, y1), (x2, y2), . . .

Streaming bounds penalize the number of times a sample is inspected.
This type of bound fits in quite well with the branching program framework.
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When should lower bounds exist?

We present here two function classes on Fn2 → {−1, 1} of size 2n.
An easily learnable function class:

{fk(x) ≡ (−1)k | 0 ≤ k ≤ 2n − 1}.

A not so easily learnable function class [Raz18]:{
fc(x) = (−1)

∑n
i=1 cixi | ci ∈ {0, 1}

}
One sense in which a learning problem can be “hard” is that you have to
know θ exactly to find fθ(x).
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Spectral Norm Condition

The result of [Raz17] says that learning is particularly hard when the matrix

M =


fθ1(x1) fθ2(x1) . . . fθn(x1)
fθ1(x2) fθ2(x2) . . . fθn(x2)
...

...
...

fθ1(xk) fθ2(xk) . . . fθn(xk)


has a low spectral norm (∥M∥2 small). Why is this important?
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Spectral Norm Intuition

Take Θ =
[
p(θ1) p(θ2) . . . p(θn)

]⊤, letting this be the prior that we have
on θ.

Low spectral norm corresponds to ∥MΘ∥2 being small when ∥Θ∥2 is small.
MΘ is [

Eθ∼p[fθ(x1)] Eθ∼p[fθ(x2)] . . . Eθ∼p[fθ(xn)]
]⊤

.

Note that when this vector has small norm, it effectively means that we are
uncertain about fθ(xi) just from knowing what Θ is. In some sense, when the
spectral norm is small, there are no “shortcuts” to knowing fθ(xi) without
knowing θ exactly.
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Main Theorem

Theorem ([Raz17])
Let Θ,X be two finite sets. Let n = log2 |Θ|. Let M : Θ×X → {−1, 1} be a matrix,
such that ∥M⊤∥2 ≤ 2γn where γ < 1. For any constant c′ < 1

3 , there exists a
constant ϵ′ > 0, such that the following holds: Let c = c′ · (1− γ)2, and let
ϵ = ϵ′ · (1− γ). Let B be a branching program of length at most 2ϵn and width at
most 2cn2 for the learning problem that corresponds to the matrix M. Then, the
success probability of B is at most O(2−ϵn).

Thus, to learn problems with we either need quadratic space or exponentially
many samples.
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Walking Along the Branching Program

A branching program is a layered graph whose leaves correspond to the
output values of θ (the predicted parameters).

Key idea: Instead of executing the entire program until reaching a leaf, we
truncate the path after reaching a certain threshold of significance at a
node.

Theorem

The probability that T reaches a significant vertex is O(2−ϵn).
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Measuring Progress of the Branching Program
The proof defines

Zi =
∑
v∈Li

Pr(v) · ⟨Pθ|v,Pθ|s⟩n, i = 1, 2, . . . ,m.

Using an upper bound on Zi, it is shown that any particular significant
vertex is reached with low probability.
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Implications for Learning

There are surprisingly deep ramifications of space lower bounds on
practical machine learning.
Notably, streaming encapsulates most first-order methods, which use O(D)
space, where D is the number of parameters.
Examples: SGD, Adam, AdaGrad, etc.
Thus, unless D≫ n2, it may actually not be possible to solve the “hard
problems” that we’ve described.
Partially generalizes why learning parities is hard [SSSS17].
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Practical Applications: Filecoin
Another application of space lower bounds is to cryptocurrencies.
An example of a “Proof-of-Space” system is the proof of replication used in
Filecoin, part of the largest distributed filesystem in the world.

Figure: Filecoin

Using space lower bounds is similar to asking a client to prove that it can
store your object, but asking it to solve tasks which require space.
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