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Background

Graph Prediction

Many objects of study in the modern era are on graphs:

Social Networks (e.g. coauthorship, Facebook, friends)

Biology (e.g. proteins, drugs)

Encapsulating relationships (e.g. objects in scenes, parse trees, link
networks on the web)

Graphs provide a particularly nice illustration of sparsity. Many times even
the quantity n2 is too large to fit in memory, but the number of edges, m,
does. This has led to a lot of work on sparse graphs, e.g.
[Spielman and Teng, 2004].
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Background

Measuring understanding

As explained previously, modelling the structure of graphs is a task of
significant importance.

However creating a task that can test for this is nontrivial because
graphs don’t usually lend themselves to bulk prediction tasks the
same way images do, as it’s difficult to find many graphs.

To deal with this, the field has proposed a few interesting tasks to
measure “graph understanding”.
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Background

Commonly used tasks

Node Classification, or predicting the labels of various nodes

This is a specific instance of community detection, which we explored
in class.

Figure: Political Blogging Network [Adamic and Glance, 2005]
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Background

Commonly used tasks

Link prediction, or predicting links in a graph, is a very nice task.
How do we test it though?

One way is to remove information about links, and then attempt to
predict that from the remaining links. However, the resulting
networks are fundamentally incomplete.

In a task originally introduced by [Liben-Nowell and Kleinberg, 2007]
where the network (in this case the coauthorship network) evolves
over time. This induces a particularly natural task, because we can
attempt to predict the future from the present, and these are all
complete networks.
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Background

Commonly used tasks

Graph Classification / Regression is the task which bears the most
similarity to standard supervised learning applications – it involves
learning a function f so that

f (Gi ) ≈ yi .

An example is the recent advance by AlphaFold, which predicts
protein folding structures.
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Background

AlphaFold

Figure: Protein Folding
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Graph Neural Networks

GNN formulation

In general, a convolutional GNN inputs a C features xv per node.
Through many layers of conv filters, we output a F -dim hv latent feature
per node, which we can use to perform the desired task.
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Graph Neural Networks Spectral Methods

Spectral Methods

Spectral methods focus on the spectral properties of the graph.

The principal object of study in spectral graph theory is the Laplacian
matrix, which is

L = D − A

where D is the degree matrix and A is the adjacency matrix. For
example, the commute time heuristic can be naturally represented in
terms of the spectrum of D − A. The eigenvectors of L have great
significance in many ways.

What if we could use this systematically?

Sirohi, Wang, Zhu Graph Neural Networks December 12, 2020 10 / 30



Graph Neural Networks Spectral Methods

Spectral Methods

The standard convolutional network architecture

h(k)
:,j = τ

fk−1∑
i=1

Θ
(k)
i ,j h(k−1)

:,i

 , 1 ≤ j ≤ fk

However, this formula does not incorporate any elements of a graph.
Thus, we consider the modification

h(k)
:,j = τ

fk−1∑
i=1

UΘ
(k)
i ,j U>h(k−1)

:,i

 , 1 ≤ j ≤ fk

where U is the Laplacian eigenbasis of the graph G . We can now
make a sparsity assumption on Θ – it must be diagonal!
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Graph Neural Networks Spectral Methods

Algorithmic Difficulties

h(k)
:,j = τ

fk−1∑
i=1

UΘ
(k)
i ,j U>h(k−1)

:,i

 , 1 ≤ j ≤ fk

This product is difficult to evaluate quickly - note that calculating U
of the graph requires O(n3) times. Thus, there are approximations
based on Chebyshev polynomials to calculate this expression faster -
this is known as ChebNet.

When one uses Chebyshev polynomials, one can make an
approximation with two steps - as it turns out, this is equivalent to
the graph convolutional network.
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Graph Neural Networks Spectral Methods

Why spectral?

h(k)
:,j = τ

fk−1∑
i=1

UΘ
(k)
i ,j U>h(k−1)

:,i

 , 1 ≤ j ≤ fk

Consider feature vector h ∈ Rn.

Project into Fourier basis Col(U) to get U>h.

Apply convolution with g ∈ Rn

h ∗G g = F−1(F (h)� F (g)) = U(U>h �U>g)

Reparametrize with G θ = diag(U>g)

h ∗G g = UG θU>h

G θ is the diagonal matrix that parametrizes the convolutional filter.
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Graph Neural Networks Spatial Methods

From fully connected to graph neural networks

In a fully connected neural network, we have that each element of
layer i + 1 - xi+1,y is a function of all xi ,y ′ .

In a convolutional neural network, we have that xi+1,y is a function of
a smaller set of xi ,y ′ , namely only y ′ which are close to y .

In a graph neural network, xi+1,y is a again a function of a smaller set
of xi ,y ′ , except it has a particular structure: the nearby y ′ are those
that are adjacent in the graph.

Spectral methods are in fact also localized to a k-hop neighborhood,
though in a less obvious way.
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Graph Neural Networks Spatial Methods

Spatial Graph Neural Network Definition

Recall that for each node v in a graph, a GNN learns a latent
representation hv .

Each hv is initialized as xv (which is possibly empty). In a spatial
GNN, this is then updated according to the values of its neighbors at
each iteration.

For example, at the k-th iteration, we update it as

a(k)
v = AGGREGATE(k)

({
h(k−1)
u : u ∈ N (v)

})
,

h(k)
v = COMBINE(k)

(
h(k−1)
v , a(k)

v

)
.
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Graph Neural Networks Spatial Methods

WL Test

We now present a test for isomorphism, the WL-test, which bears a strong
relationship to GNNs.

Figure: Two Graphs. Figures taken from https://davidbieber.com/post/

2019-05-10-weisfeiler-lehman-isomorphism-test/
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Graph Neural Networks Spatial Methods
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Graph Neural Networks Spatial Methods

WL Test
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Graph Neural Networks Spatial Methods

The graph isomorphism network

In fact, if the local structures of two nodes are the same, the latent
representations will be identical. [Xu et al., 2019]

What could go wrong with this?
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Graph Neural Networks Spatial Methods

A task in link prediction

The naive approach: for (u, v), use CONCAT(hu,hv ).

Figure: In this graph, hu = hv by symmetry, so the naive link prediction of (v2,
v1) is identical to that of (v3, v1)
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Graph Neural Networks Spatial Methods

SEAL: A method for link prediction

Latent node representation → latent link representation.

Lu,v : V → N encodes relative location of nodes to (u, v).

Concatenate Lu,v (w) to GNN input as an add’l feature per node.

Run GNN as usual.
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Combining the Methods

Correct and Smooth

A recent work [Huang et al., 2020] combines classical methods as well
as graph neural networks in a particularly nice framework. It starts
with a set of base predictions on the training set, and then uses local
smoothness to figure out the correct values.

Step 1: Generate base predictions

Step 2: Correct these predictions by propagating errors along edges

Step 3: Construct our best guesses by appealing to the training data
again
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Combining the Methods

Correct

Initial error is ELt = ZLt − YLt , E{v} = 0 for other v .

Intuition: The errors of models at similar nodes should be correlated.

We can propagate the errors with

Ê = arg min
E ′

tr(E
′T (I − D−1/2AD−1/2)︸ ︷︷ ︸

NL

E ′) + µ|E ′ − E |2F

Our corrected predictions are Z c = Z + σÊ/|Ê |1, where σ is the
average error.
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Combining the Methods

Smooth

Intuition: The labels of at adjacent nodes should be correlated.

Thus, we smooth our predictions with

Ẑ = arg min
Z ′

tr(Z
′T (I − D−1/2AD−1/2)︸ ︷︷ ︸

NL

Z ′) + µ|Z ′ − Z c |2F .
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Conclusion

Conclusion

While Graph Neural Networks have shown great promise in recent
years, their mechanisms for working are unclear. Some gains, like
those in node classification, may be due to other things than simply
“stronger representations”.

Graph Neural Networks often need assistance from other modules to
“format” its output. When they do, however, the results can be quite
strong. See [Karalias and Loukas, 2020] for an example.
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Conclusion
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