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Abstract. In this problem, we apply the Bayesian Persuasion model of [3] to restaurant

wait time reporting, specifically in the context of apps like Yelp. A natural guess is that

the optimal signalling scheme consists of reporting intervals of the wait time, like the result

in [1]. We confirm that this is true in the case with one customer; however, previous work

([2]) shows that this is no longer true when there are two customers. In light of this result,

we discretize the wait times, converting the problem to a problem in linear programming,

and then we use learning theory to bound the loss of our signalling scheme. Finally, we

propose a possible fix to the issue of lacking monotonic signalling structure. Specifically,

we regularize the utilities of the customers, which causes the problem to fall into the model

considered by [5].
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1. Introduction

In an increasingly digitized world, publishing of wait times by restaurants has become

standard behavior to help customers make better informed choices. Consider the following,

taken from Yelp.

While big data may help one predict the wait time accurately, we should first ask ourselves,

are the companies incentivized to follow this method? This is not as easy as it appears at

first glance: consider the following example.

1.1. An Illustrative Example. Assume that we have a customer whose utility from going

to McDonald’s is 6.5 minus the wait time in minutes, and that the customer maximizes

expected utility. Assume the wait time is equally likely to be 5 or 7 minutes. Then the

restaurant does not want the customer to know the true wait time, because if the wait time

is 7 minutes the customer will not go, but if the customer does not know the true value he

will go every time, because his expected utility is positive.
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Now assume that we have another customer whose utility from going to McDonald’s is 5.5

minus the wait time in minutes, and assume the same utility as before. Then the restaurant

does want the customer to know the true wait time, because the customer’s expected utility

is negative but the restaurant really wants the customer to know if the wait is five minutes.

Intuitively, if telling you some information makes you come, there is no reason to dissuade

you from coming by telling you more information.

In the second case, the optimal strategy is not to give the customer the true wait time.

Instead, the customer should be told that the wait time is 5 minutes whenever it actually

is 5 minutes, as well as just under 1/3 of the time when the wait time is 7 minutes. This

way, someone visits just under 2/3 of the time, as opposed to 1/2 of the time. In a similar

vein, the optimal behavior for a restaurant is to merely to find some time t such that the

expected utility of the customer is zero given that they condition on the wait time being

below t (follows from lemma 5.1).

2. Related Work

The study of sender-receiver games began with [1]. In Crawford’s model, known as cheap

talk, the sender can send signals to the receiver, but the signals do not carry strategic value.

In our model, following [3], when the sender sends signals to the receiver, the sender must

pre-commit to a signalling scheme. If player A chooses signalling schemes in “signalling

space” then player B chooses best responses. The difference is that in cheap talk, the game

is simultaneous; player A chooses possible responses to signals, whereas player B chooses

some action given the signal. However, in Bayesian persuasion, the game is sequential;

player B knows the signalling scheme that player A chose.

Another type of problem Bayesian persuasion has seen applications to is problems in

teaching. For example, is “teaching to the test” a good policy? This question is addressed

by [4]. If one has unmotivated students, then teaching to the test at least encourages the

students to learn something, as opposed to nothing. However, if one has motivated students,

not teaching to the test will cause the students to learn everything. In particular, the optimal

solution is to induce a belief in the students that they are indifferent between studying a

given piece of information and not studying a piece of information; the goal is to maximize
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the amount of information for which students are indifferent, and to tell the students that

the rest will for sure not appear on the test.

In general, sender-receiver games can be solved by a method known as concavification,

where we look at the smallest concave function which is weakly greater than the payoff

function over all of signal-space. [7] shows that the optimal payoff is always the concavication

evaluated at the prior. Nonetheless, signal space is big, and this intuition is not useful. It

will, however, become useful when we discretize the space of wait times.

Bayesian Persuasion is generally tractable in a few contexts; one in which the action space

is continuous, one in which the action space has size two, and one in which the payout to

the receiver depends only on the mean of the posterior distribution. The last is somewhat

tricky because in general a group of posteriors can be the outputs of the signals as long as

the expected value of the posteriors is the prior. But a group of posterior means cannot be

the outputs of the signals as long as the expected value of the posterior means is the prior

mean! For a full analysis of this case, we direct the reader to [2].

3. Our Model

There is one restaurant, restaurant R. There are N customers c1, c2, . . . cn, and customer

ci has utility function ui(t), where t is the wait time of the restaurant. If customer ci knows

that the restaurant’s signalled wait time is X, customer ci will go iff

Et∼X [ui(t)] ≥ 0.

We assume further that ui satisfies a non-crossing condition; specifically, if ui(x) > uj(x)

for some value of x, then ui(x) > uj(x) for all values of x. What this condition implies is

that there exists an ordering of the customers c1, c2, . . . cn so that ci going to the restaurant

implies that c1, c2, . . . ci−1 all go to the restaurant.

We assume that the restaurant signals via the Bayesian persuasion framework, as described

in [3]. The restaurant and all customers know that the wait time is drawn from a prior

distribution t ∼ T . Furthermore, the restaurant knows the realized waiting time t0. Assume

that T is supported on a discrete subset of R+. There is a set of signals S. The signalling

function ϕ : T → S maps the waiting time to a signal.

After receiving a signal s, each customer ci then decides if

Et∼X|s[ui(t)] ≥ 0
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and then decides whether or not to go to the restaurant. The utility of the restaurant comes

solely where the customer goes to the restaurant or not; importantly, it does not depend on

the wait time at all. In fact, we will assume that the utility of the restaurant is additive,

and they gain one from a customer coming and zero otherwise.

We use a merging result of [3]. Specifically, signals matter insofar as they induce posteriors

(the distribution of true wait times conditioned upon receiving a specific signal).

4. Relating Required Signals to Action Space

Lemma 4.1. If there are k customers, there exists a Sender-Preferred Subgame Equilibrium

where |S| ≤ k + 1.

Proof. Consider the Sender-Preferred Subgame Equilibrium with the smallest possible signal

space. Note that, as a result of the aforementioned non-crossing condition, there exists

an ordering of the customers c1, c2, . . . cn so that ci going to the restaurant implies that

c1, c2, . . . ci−1 all go to the restaurant. As a result, the only possible outcomes are where a

prefix of this list go to the restaurant. Thus, there are at most k+1 possibilities (the lengths

of all possible prefixes). In this sense, we say the customer action set is bounded by k + 1.

Assume, for sake of contradiction, that there exists two signals S1 and S2 such that they

map to the same customer actions. We could create a new signal S ′ and use it whenever the

original signalling strategy would use S1 or S2. Clearly it is still optimal for consumers to

complete the same actions, and the sender does not have any decrease in utility. Since this

causes the signal space to decrease, it causes a contradiction. By pigeonhole principle, such

a conflict of two signals occurs whenever the signal space is larger than k + 1. Thus, there

exists a Sender-Preferred Subgame Equilibrium where |S| ≤ k + 1. �

This aids us in determining the structure of optimal signalling strategies and making

computationally efficient algorithms to optimize a restaurant’s signalling strategy.

5. Structure of Optimal Signalling Strategies

Often, an understanding the structure of equilibria makes designing computational solu-

tions more approachable. We examine the structure of optimal signalling strategies for the

special case where there is only one customer.
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Lemma 5.1. There exists a Sender-Preferred Subgame Equilibrium such that the support of

S1 contains no time strictly smaller than a time in the support of S2.

Proof. Consider an optimal signalling strategy in a Sender-Preferred Subgame Equilibrium

which uses two signals S1 and S2. We know that there must exist an optimal signalling

strategy using at most two signals by lemma 4.1. If the receiver does the same action for

all the given signals, then we can trivially make the lemma true by always using S1 and

we will not decrease the sender’s utility. Otherwise, without loss of generality let S1 be

the signal where the customer decides not to go to the restaurant, and S2 be the signal

where the customer decides to go to the restaurant. Suppose there exists a time i in the

support of S1 and j in the support of S2 such that i < j. We can describe our signalling

strategy in a way such that PA,B denotes the probability that the true wait time is A and we

report signal B. We will modify our signalling strategies and denote the new probabilities

in the form P ′A,B. We can set all probabilities in P ′ the same as P , except set P ′i,S1
=

Pi,S1 − min(Pi,S1 , Pj,S2), P
′
j,S1

= Pj,S1 + min(Pi,S1 , Pj,S2), P
′
i,S2

= Pi,S2 + min(Pi,S1 , Pj,S2),

and P ′j,S2
= Pj,S2 − min(Pi,S1 , Pj,S2) such that the utility of the sender does not decrease.

This is because we are essentially swapping i and j between S1 and S2. Through this,

the probability of using S2 does not decrease and the expected wait time when the sender

signals S2 decreases. As such, the probability of the customer going does not decrease, and

the utility of the sender does not decrease. Thus, using this exchange argument repeatedly

applied, we show that our lemma holds. �

With this structure proven, computing a solution for the two-person scenario is compu-

tationally simple. We can simply binary search for the largest suffix of the waiting time

distribution such that the customer goes to the restaurant. However, the same cannot be

said for cases with more consumers. In cases with larger action sets, there exist examples

within the Bayesian Persuasion model where there exists no optimal signalling strategy in

the form of contiguous ranges [2].

6. Optimizing for N Potential Customers

Given that with a large number of customers, we no longer have a favorable structure

of optimal solutions to exploit, we need a new approach. In this section, we make the
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assumption that utilities of customers are linear functions; by this, a customer chooses to go

to the restaurant iff the expected wait time is below some threshold.

We utilize linear programming to determine an optimal signalling strategy to maximize

utility for the sender. We will assume, like previously, that for each customer we know

the cutoff expected wait time at which they will change whether or not they go to the

restaurant. Thus, we know x0, x1, . . . xN where xi denotes the expected wait time such that

if the expected wait time is ≤ xi then i people will go. Additionally, let Ti denote the value

of the i-th element of T , the set of possible wait times. Similarly, Gi denotes the probability

that the wait time is Ti. All xi, Ti, and Gi are constants in our linear program. Additionally,

we will have states S0, S1, . . . , SN where signal Si denotes a signal where, upon receiving

this, i customers are expected to come to the restaurant. Our signalling strategy will be

described by a series of variables pi,j which represents the probability that signal i is used

and the wait time is Tj. We will use variables hi to denote the probability that we use signal

i. Finally, we will use variables wi to represent hi multiplied by the weighted average of wait

times conditioned up signal i being used. We use the following constraints:

(6.1) maximize :
1

N
× h1 +

2

N
× h2 + · · ·+ N

N
× hN

(6.2) ∀i ∈ [N ] : hi =

|T |∑
j=1

pi,j

(6.3) ∀j ∈ [|T |] :
N∑
i=0

pi,j = Gj

(6.4) ∀i ∈ [N ], j ∈ [|T |] : pi,j ≥ 0

(6.5) ∀i ∈ [N ] : wi =

|T |∑
j=1

pi,j × vj

(6.6) ∀i ∈ [N ] : wi ≥ xi × ti

Lemma 6.1. This linear program produces an optimal signalling strategy for the sender.

Proof. The linear program works to maximize the expected number of customers that go to

the restaurant (shown in equation 6.1). Equation 6.2 enforces that all pi,j conform with the

chosen value of hi, equation 6.3 enforces that all pi,j conform with the given value of Gj,

and equation 6.4 enforces that all probabilities are non-negative. Equation 6.5 enforces the

definition of all wi. Finally, equation 6.6 enforces that for every signal i that is used with

positive probability the average wait time is at least the minimum required for the customers
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to listen to the signal. As such, the linear program enforces the relevant constraints and

optimizes for the sender’s utility. �

While this linear program computes an optimal signalling strategy for the sender when all

the customer’s cutoff points are known, the case where we do not know all the cutoff points

is interesting and applicable to the real-world as well.

We will utilize our linear program as a form of empirical risk minimization given a sample

of customer cutoff points. We utilize Rademacher complexity to bound for generalization

error to bound the error of our empirical risk minimization:

Lp(h)− Ls(h) ≤ 2 Rad(F ◦ S) + ε

with high probability [6]

(The loss function is given by the probability the customer goes to the restaurant under

a given signalling scheme, where in Lp the customer is randomly drawn from the population

and in Ls the customer is randomly drawn from a sample of size m.) Since our error is in

range [0, 1], we use this version of Massart’s Lemma to bound:

Rad(F ◦ S) ≤
√

2 log |H|
m

[6]

Where |H| is the size of our hypothesis class. Since the solutions to our linear program

must fit inside a floating-point number, we will act as if it is discretized and we can store

|P | distinct values in range [0, 1]. If we have a hypothesis space of |P |N |T | (which contains

the optimal hypothesis following lemma 4.1), then we apply our inequalities to get that we

can have ≤ ε error if we use m samples where:

m ≥ 8N |T | log |P |
ε2

Which does not really help us, since originally we could simply sample all N customers

and have an optimal signalling scheme. However, we can make the following observation:
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Lemma 6.2. There exists a signalling scheme in the hypothesis space where we only have 1
ε

signals corresponding to actions where 0, εN, 2εN, . . . , N customers come to the restaurant

and the expected probability of a customer coming is at most ε less than the optimal signalling

scheme with N + 1 signals.

Proof. Consider the optimal signalling with N + 1 signals. In this scheme we know that

signal Si corresponds to a signal where i customers will come. We remap this to a signalling

scheme S ′ which contains signals S ′0, S
′
εN , S

′
2εN , . . . , S

′
N . We will use the signal S ′iε whenever

our original scheme would use any signals in range [Siε, S(i+1)ε−1]. Note that, since we

“round down” signals, customers will always still want to listen to our new signalling scheme

S ′. Let P[Si] denote the probability of using signal Si under the original scheme. The

expected probability that a random customer comes under the old signalling scheme S was

P[S0]× 0 + P[S1]× 1
N

+ P[S2]× 2
N
, . . . ,P[SN ]× 1. The expected probability that a random

customer comes under the new scheme is (P[S0] + · · · + P[SεN−1]) × 0 + (P[SεN ] + · · · +

P[S2εN−1])× ε+ · · ·+ (P[SN−εN + · · ·+ P[SN ])× (1− ε). Since the coefficient of every P[Si]

decreases by at most ε, the total decrease is at most ε, and our statement is true. �

Thus, we can use a modified version of our linear program as a method of empirical risk

minimization to optimize over the class where we have such 1
ε

signals. We can simply remove

all hi in equation 6.1 where i is not a multiple of εN and is not N . Our new hypothesis

space to find an optimal such signalling scheme is |P ||T |/ε. Thus, we can use generalization

error and Massart’s lemma again to show that we can have ≤ ε error if we use m samples

such that:

m ≥ 8|T | log |P |
ε3

If instead we use 2
ε

signals (so that we are within ε/2 of the optimal signalling scheme

with N signals by lemma 6.2), and use m ≥ 4|T | log |P |
(ε/2)3

, we will be within ε error of the

optimal signalling scheme by triangle inequality. Thus, we can do this and have a sampling

complexity of O( |T | log |P |
ε3

)! In practice, |T | and log |P | are effectively constants fairly limited

in size, so this is a very strong bound.
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7. Obtaining Monotonic Signal Structure

In [5], Mensch derives sufficient conditions (notably d-quasisupermodularity) for mono-

tonic signal structure when the action space is continuous. One naive way to make the

signal structure in this problem continuous is by allowing the customer to choose a proba-

bility p for going to the restaurant; however, this lacks interior optima. Instead, we can add

a concave regularizer to the expected utility, which will yield interior optima. We have not

fully explored this, but it would be interesting to attempt to verify d-quasisupermodularity

for the regularized version of the function.

8. Conclusion and Applications

The optimal outcome in many cases is a contiguous signalling scheme, where for each

signal s we tell the same thing to the customer regardless of where we are in that range.

Assuming that the true prior of wait time is given by Xt, and the restaurant knows the exact

wait time, and further assuming that Xt does not change substantially over time, we should

expect that only the same ranges will be reported over and over again. For example, the

following behavior should not happen:

When the true wait time is 15, report [5, 25]. When the true wait time is 25, report [15, 35].

This does not work, because [5, 25] should intersects [15, 35].

Now we ask, how does this work in the real world? Yelp provides wait time intervals

(confidence not specified). Over a small period of time, how do their wait time estimates

change?

We did an experiment for this. Below is evidence of qualitatively different behavior be-

tween two restaurants.

When we contacted restaurants who use Yelp’s wait time estimation algorithm, we obtain

that Yelp makes these estimates with machine learning. Yelp is given data by the restaurants,

and then Yelp makes the predictions. Yelp’s incentives are likely a mix of wanting to have

accurate predictions, so that customers will use the app, as well as bringing in revenue for

restaurants who use the app, so that they can acquire more restaurants as customers. Yelp

declined to comment on their wait time estimation algorithm, stating that all relevant details

are proprietary information.
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(a) (b)

Figure 1. a shows the wait time for Boston Burger and b shows the wait
time for Happy Lamb. Happy Lamb seems to follow the theoretically optimal
strategy, whereas Boston Burger appears to be reporting true wait times.
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